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Abstract In this paper, for the position control prob-
lem of permanent magnet linear motors, a fast non-
singular terminal sliding mode control (FNTSMC)
method based on the finite-time disturbance observer
(FTDO) is proposed. By employing a fast nonsingu-
lar terminal sliding surface, the FNTSMC is designed.
Besides, a FTDO is applied to estimate the disturbance
and the estimation is served as compensation for the
controller. A rigorous analysis based on the Lyapunov
stability theory is provided to prove that the proposed
control method can achieve faster dynamic response
characteristic and higher steady accuracy than the lin-
ear sliding mode control method and the PID control
method. Numerical simulation results are explored to
illustrate the superiority of the proposed approach.

Keywords Fast nonsingular terminal sliding mode
control · Finite-time disturbance observer · Permanent
magnet linear motor · Robustness

J. Li · H. Du (B) · Y. Cheng · X. Chen · C. Jiang
School of Electrical Engineering and Automation, Hefei
University of Technology, Hefei 230009, Anhui, People’s
Republic of China
e-mail: haibo.du@hfut.edu.cn

G. Wen
School of Mathematics, Southeast University, Nanjing
210096, Jiangsu, People’s Republic of China

G. Wen
School of Engineering, RMITUniversity,Melbourne, VIC 3001,
Australia

1 Introduction

Nowadays, the permanentmagnet linearmotor (PMLM)
is playing an increasingly important role in civil, indus-
trial and military applications [1,2].In particular, it is
broadly implemented in the precision manufacturing
industries as a result of its high thrust density, high
acceleration, high speed, high precision. Consequently,
the research of PMLM is recently getting more con-
spicuous attentions by the research community. The
principal limitations confronted by a PMLM are the
external disturbances, force ripples and frictions [3].
From the perspective of motion control, it is crucial
to achieve the fast dynamic response and improve the
tracking precision property of PMLM.

There are numerous control algorithms already
applied for analysis and design of PMLM in the recent
literature. In [4], a robust adaptive algorithm was pre-
sented for offset of friction and force ripple generated
by PMLM. A water-cooled PMLM system was mod-
eled, and its temperature characteristics were investi-
gated under various working duties in [5]. The closed-
loop speed control performance of PMLMbased onpri-
mary flux-oriented control was studied in [6]. The slid-
ingmode control (SMC),which is a preferredmethod to
handle the control problems of nonlinear systems, has
been resoundingly used in the practical project since it
is insensitive to parameter change and interference in
[7–13]. In [14], an adaptive 2-SMCmethod is proposed
for a class of unknownmulti-inputmulti-output nonlin-
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ear discrete systems. In [15], combining the SMC and
data-driven control method, the stable pressure control
was solved for the gas collectors of coke ovens. Nev-
ertheless, the traditional SMC only ensures the asymp-
totic stability of the closed-loop system in the sliding
mode phase while the system states converge to the
equilibrium point at an infinite time.

Due to the superiority of finite-time convergence
[16–18], the terminal sliding mode control (TSMC)
was presented in [19–22]. Moreover, the nonsingular
TSMC (NTSMC) was proposed to avert the singu-
larity and applied in some practical control systems
[23–26]. Even so, the internal discontinuity occurs the
aforementioned TSMC schemes as ever. Accordingly,
there are some efficient techniques that have been used
to overcome the chattering problem as a result of the
internal discontinuity, such as full-order SMC [27]
and the fast nonsingular terminal sliding mode con-
trol (FNTSMC) [28–35]. Specifically, the FNTSMC
can obtain a fast state convergence to improve tracking
accuracy as well as restrain the chattering problem. In
this paper, inspired by these merits of the FNTSMC
method, we apply the FNTSMC method to a PMLM
system.

However, the FNTSMC-based PMLMsystem copes
with the uncertainties by making a trade-off between
control performance and robustness. One effective
approach,which can not only guarantee the control per-
formance but also improve the robustness, is feedfor-
ward compensation of the disturbances [36–38]. The
observer-design approach is effective to estimate the
disturbances, such as sliding mode observer [39,40]
and finite-time observer [41,42]. Motivated by the
finite-time observer, a novel finite-time disturbance
observer (FTDO) is adopted in this paper to provide
the estimation of the lumped disturbances and imple-
ment the feedforward compensation.

The major contributions of this paper are: (1) A fast
nonsingular terminal sliding mode surface is designed
to achieve the fixed-time stability, i.e., the system state
will converge to the equilibrium in afixed time indepen-
dent of initial condition, which overcomes the short-
coming that the TSMC has a slower convergence rate
than the linear sliding mode controller (LSMC) when
the system state is far away from the equilibrium.Addi-
tionally, a FNTSMC algorithm with good performance
in robustness and chattering reduction is proposed to
realize the highly accurate position tracking control for
a PMLM system. (2) A higher-order FTDO is applied

to estimate the time-varying disturbances, and then, the
estimated values are used as feedforward compensation
of the disturbances. (3) A theoretical stability analysis
of the closed-loop system and corresponding simula-
tion results are provided to show the effectiveness of
the proposed control algorithm. In addition, it is clearly
seen the superiority of the proposedmethod in compar-
ison with some existing ones.

The remainder of this paper is organized as follows.
In Sect. 2, the PMLM systemmodel and control objec-
tive are introduced. In Sect. 3, A FNTSMC controller
with the finite-time disturbance observer is proposed
and its stability is analyzed. Simulations results are
implemented to demonstrate the effectiveness of the
proposed control strategy in Sect. 4. The conclusions
of this paper are given in Sect. 5.

2 System description and problem formulation

2.1 Model of PMLM

The mathematical model of PMLM can be expressed
as follows [43]:

ṗ1(t) = p2(t),

ṗ2(t) = − L f Le

Rm
p2(t) + L f

Rm
u(t) − d(t)

m
,

y(t) = p1(t), (1)

where p1 denotes the position, the velocity is denoted
by p2 , u(t) represents the control input, R denotes the
resistance,m denotes themotormass, L f and Le denote
the force constant and the back electromotive force,
respectively. The lumped disturbance named d(t) is
composed of friction force, ripple force and external
disturbance, etc.

2.2 Control objective

The PMLM control system is designed to ensure that
the reference trajectory can be tracked by the actual
motor’s position. Let pr(t) denote the reference lin-
ear displacement, whose first-order and second-order
derivatives are assumed to be bounded.

For simplicity, denote

a = L fLe

Rm
, b = L f

Rm
, F = −d(t)

m
, (2)
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then Eq. (1) can be rewritten as follows:

ṗ1(t) = p2(t),

ṗ2(t) = −ap2(t) + bu(t) + F,

y(t) = p1(t). (3)

The main objective of this paper is to design a
controller for PMLM such that the position signal
y = p1 can track the reference signal pr. To improve
the dynamical performance and disturbance rejection
performance, the method of fast nonsingular terminal
slidingmode control (FNTSMC)will be employed. For
the convenience of controller design and stability anal-
ysis, the error dynamical system is derived.

Define

e1(t) = pr(t) − p1(t),

e2(t) = ṗr(t) − p2(t), (4)

as the tracking errors for linear displacement and speed
signal. Thenwe can obtain the following error dynamic
equation from (3) :

ė1(t) = e2(t),

ė2(t) = −ae2(t) − bu − F + a ṗr + p̈r,

y = p1. (5)

About the disturbance, the following assumption is
made in this paper.

Assumption 1 For PMLMsystem (3), the lumped dis-
turbance F is assumed to satisfy that

(1) |F | ≤ d∗ with a constant d∗,
(2) the n − 1 time derivatives of F is existing and

|F (n−1)| ≤ ς , where ς is a positive constant.

2.3 Some definitions and lemmas

Definition 1 (Finite-time stability) [44] Consider the
system

ẋ = f (x), f (0) = 0, x(0) = x0, x ∈ Rn, (6)

where f (·) : Rn → Rn is continuous. The equilib-
rium x = 0 of system (6) is finite-time stable if it is
Lyapunov stable and finite-time convergent, i.e., there
exists a finite time T (x0) which is dependent on the
initial condition x0 such that limt→T (x0) x(t) = 0 and
x(t) = 0 for all t ≥ T (x0).

Definition 2 Denote sigα(x) = sign(x)|x |α , where
α > 0, x ∈ R, sign(·) is the standard sign function.

Lemma 1 [44] For the system (6), suppose that there
exists a positive definite and proper function V (x) :
Rn → R such that ∂V (x)

∂x f (x) + c(V (x))α ≤ 0 for all
x ∈ Rn, where c > 0, α ∈ (0, 1). Then, this system is
globally finite-time stable.

Lemma 2 [45] For the system (6), suppose that there
exists a continuous, positive definite function V (x) :
Rn → R such that V̇ (x) ≤ −αV p(x) − βV q(x),
where α > 0, β > 0, 0 < p < 1, q > 1. Then the
origin is a fixed-time stable equilibrium and the fixed
convergent time satisfies T ≤ 1

α(1−p) + 1
β(q−1) .

Lemma 3 [46] For any x1, x2 ∈ R and a real number
p ∈ (0, 1], (|x1| + |x2|)p ≥ 2(p−1)(|x1|p + |x2|p).
Lemma 4 [47] The inequality

|x |c|y|d ≤ c

c + d
γ |x |c+d + d

c + d
γ −c/d |y|c+d

holds ∀x, y ∈ R, and ∀c, d, γ > 0.

3 Finite-time disturbance observer-based
FNTSMC control method

3.1 Design of a finite-time disturbance observer

To handle the time-varying disturbance F(t), a finite-
time disturbance observer is employed to estimate the
disturbance.

Theorem 1 For PMLM system (3) under Assump-
tion 1, if the disturbance observer is chosen as

˙̂q1 = −ap2 + bu + q̂2 + f1sig
r1(p2 − q̂1),

˙̂q2 = q̂3 + f2sig
r2(p2 − q̂1),

...

˙̂qn−1 = q̂n + fn−1sig
rn−1(p2 − q̂1),

˙̂qn = fnsig
rn (p2 − q̂1),

F̂ = q̂2 (7)

then

(1) if the disturbance is constant, the disturbance esti-
mation F̂ will converge to the real disturbance F
in a finite time,
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(2) if the disturbance is time varying, the disturbance
estimation error will converge to a bounded region
in a finite time, i.e., |F̂ − F | ≤ σ with a constant
σ,

where fi > 0 are appropriate positive gains, ri =
1 + iτ, τ ∈ (− 1

n , 0), (i = 1, 2, . . . , n).

Proof We will analyze the stability of the proposed
observer based on Lyapunov method.

Suppose that the estimation errors are defined as

w1 = p2 − q̂1,

w2 = F − q̂2,

w3 = Ḟ − q̂3,

...

wn = F (n−2) − q̂n,

(8)

then the estimation error dynamics of the FTDO (7) are
given by:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇ1 = w2 − f1sig
r1(w1)

ẇ2 = w3 − f2sig
r2(w1)

ẇ3 = w4 − f3sig
r3(w1)

...

ẇn−1 = wn − fn−1sig
rn−1(w1)

ẇn = F (n−1) − fnsig
rn (w1).

(9)

For the error system (9) when F (n−1) = 0, it follows
from [41] that there is a positive and radially unbounded
Lyapunov function V (w) such that

V̇ (w) ≤ −cV α(w) (10)

where c > 0, α ∈ (0, 1). If F (n−1) �= 0 and |F (n−1)| ≤
ς , then

V̇ (w) ≤ −cV α(w) +
∣
∣
∣
∂V (w)

∂wn

∣
∣
∣ς (11)

By [41] and the homogeneous system theory, it can be
concluded that there is a positive constant ĉ > 0 and a
fractional power β ∈ (0, α) such that

∣
∣
∣
∂V (w)

∂wn

∣
∣
∣ ≤ ĉV β(w). (12)

It follows fromLemma 4 that there is a constantM > 0
such that

∣
∣
∣
∂V (w)

∂wn

∣
∣
∣ς ≤ c

2
V α(w) + M, (13)

which leads to

V̇ (w) ≤ − c

2
V α(w) + M. (14)

As a result, there exits a time Tf ∈ R+, for ∀t >

Tf , |wi | ≤ δi , (i = 1, 2, . . . , n) with δi being posi-
tive constants, which means that the estimation errors
converge to a bounded region in a finite time. 	


Remark 1 Although themain proofs for Theorem 1 are
motivated by the work [41], the difference is that here
the higher-order finite-time observer is used to estimate
the external disturbance while the work [41] just con-
sider the observer design for time-varying nonlinear
systems satisfying certain assumptions.

3.2 Design of fast nonsingular terminal sliding mode
controller

Basedon the previous disturbance observer, this section
will design a fast nonsingular terminal sliding mode
controller.

Step 1: design of a fast nonsingular terminal sliding
mode surface

Different from the conventional nonsingular termi-
nal sliding mode surface, a fast nonsingular terminal
sliding mode surface is chosen as:

s = e1 + β2sig
γ2(e1) + β1sig

γ1(e2) (15)

with β1 > 0, 1 < γ1 < 2, β2 > 0, γ1 < γ2.

If the sliding mode surface s = 0 can be reached in
a finite time, then one obtains that

e1 + β2sig
γ2(e1) + β1sig

γ1(e2) = 0. (16)

ChooseLyapunov functionW = 1
2e

2
1,whose deriva-

tive is

Ẇ = e1ė1 = e1e2. (17)
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Meanwhile, it follows from (16) that

e2 = −β
− 1

γ1
1 sig

1
γ1 (e1 + β2sig

γ2(e1))

= −β
− 1

γ1
1 sign(e1 + β2sig

γ2(e1)) × |e1
+ β2sig

γ2(e1)|
1
γ1

= −β
− 1

γ1
1 sign(e1) × (|e1| + β2|e1|γ2)

1
γ1 . (18)

Based on Lemma 4, substituting the equality (18) into
(17) results in

Ẇ ≤ −β
− 1

γ1
1 |e1|(|e1| + β2|e1|γ2)

1
γ1

≤ −2
1−γ1
γ1 β

− 1
γ1

1 |e1|
1
γ1

+1 − 2
1−γ1
γ1

(β2

β1

) 1
γ1 |e1|

γ2
γ1

+1
.

(19)

Based on the definition of W , it can be obtained that

Ẇ ≤ −2
3−γ1
2γ1 β

− 1
γ1

1 W
γ1+1
2γ1 − 2

2−γ1+γ2
2γ1

(β2

β1

) 1
γ1 W

γ1+γ2
2γ1 .

(20)

According to the range of gains (15), we can know
that 3

4 ≤ γ1+1
2γ1

≤ 1, γ1+γ2
2γ1

> 1. Then, based on the
Lemma 2, it can be concluded that the error e1 will
reach zero in a fixed time.

Step 2: design of a fast nonsingular terminal sliding
mode control law

In this step, we will design a fast nonsingular termi-
nal sliding mode controller such that the sliding mode
surface s = 0 can be reached as close as possible.

Theorem 2 For the error dynamic system (5), if
the nonsingular terminal sliding mode controller is
designed as

u = u1 + u2,

u1 = 1

b

(
− ae2 + a ṗr + p̈r − F̂ + 1

β1γ1
sig2−γ1(e2)

+ β2γ2

β1γ1
sig2−γ1(e2)|e1|γ2−1

)
,

u2 = 1

b

(
k1s + k2sig

γ3(s)
)
,

s = e1 + β2sig
γ2(e1) + β1sig

γ1(e2), (21)

where k1 > 0, k2 > d∗, β1 > 0, β2 > 0, 0 < γ3 < 1,
then

– (1) the sliding variable s will converge to the fol-
lowing region in a fixed time:

|s| ≤ Φ = min(Φ1, Φ2) (22)

where

Φ1 = σ

k1
, Φ2 =

(
σ

k2

) 1
γ3

. (23)

– (2) the tracking error e1 and its derivative e2 will
converge to the following region in a fixed time:

|e1| ≤
(

Φ

β2

) 1
γ2

, |e2| ≤
(

Φ

β1

) 1
γ1

. (24)

Proof We first analyze the boundedness before the
observer converges to the ultimate steady-state region.
Denote λ1 = F − F̂ . Choose the following Lyapunov
function

V = 1

2
s2 + 1

2
λ21

= V1 + V2. (25)

Based on (25), the corresponding derivative is

V̇ = V̇1 + V̇2

= sṡ + λ1λ̇1

= s(e2 + β1γ1|e2|γ1−1ė2 + β2γ2|e1|γ2−1ė1) + λ1λ̇1.

(26)

It follows from (26) that

V̇ =s
(
e2 + β1γ1|e2|γ1−1(−ae2 − bu + F + a ṗr + p̈r)

+ β2γ2|e1|γ2−1ė1
)
+λ1λ̇1

(27)

Substituting (21) into (27) leads to

V̇ =s
[
e2 + β1γ1|e2|γ1−1

(
− ae2 − b(u1 + u2)

+ F + a ṗr + p̈r
)

+ β2γ2|e1|γ2−1ė1
]

+ λ1λ̇1

=s
[

− β1γ1|e2|γ1−1
(
k1s + k2sig

γ3(s) − λ1

)]
+ λ1λ̇1
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= − β1γ1|e2|γ1−1
(
k1s

2 + k2|s|1+γ3 − λ1s
)

+ λ1λ̇1.

(28)

From the disturbance observer proposed in Theorem 1,
it can be found that the state (λ1, λ̇1) is always bounded.
Assume that there are two constants L1, L2 such that

|λ1| ≤ L1, |λ̇1| ≤ L2. (29)

Under this assumption, it follows from (28) that

V̇ ≤β1γ1|e2|γ1−1
(

− k1s
2 − k2|s|1+γ3 + L1|s|

)
+ L1L2

=β1γ1|e2|γ1−1
(

− k1(|s| − L1)|s| − k2|s|1+γ3
)

+ L1L2.

(30)

Clearly, if the state |s| ≥ L1, then it follows from (30)
that

V̇ ≤ L1L2, (31)

which implies that the function V (and then the state s)
will be bounded during the time interval [0, T ∗].

After the time T ∗, when the disturbance observer
error λ1 converges to the regionΦ, it follows from (28)
that

V̇1 =sṡ

= − β1γ1|e2|γ1−1
(
k1s

2 + k2|s|1+γ3 − λ1s
)

≤ − β1γ1|e2|γ1−1
(
k1s

2 + k2|s|1+γ3 − σ |s|
)
. (32)

Next, we will analyze the relation (32) in two cases.
Case 1 Rewrite (32) as the following form:

V̇1 ≤ − β1γ1|e2|γ1−1
((

k1 − σ

|s|
)

s2 + k2|s|1+γ3

)

.

(33)

If |s| > σ/k1 and e2 �= 0, there are two positive con-
stants c1, c2 such that

V̇1 ≤ −c1s
2 − c2|s|γ3+1 = −2c1V1 − 2

γ3+1
2 c2V

γ3+1
2

1
(34)

Therefore, the finite-time stability can be guaranteed
according to Lemma 1. In other words, the system state
will converge to the following region in a fixed time:

|s| ≤ σ

k1
(35)

Case 2 Rewrite (32) as the following form:

V̇1 ≤ − β1γ1|e2|γ1−1
(
k1s

2 + (
k2 − σ

|s|γ3
)|s|1+γ3

)
.

(36)

If |s| > ( σ
k2

)
1
γ3 and e2 �= 0, there are two positive

constants c3, c4 such that

V̇1 ≤ −c3s
2 − c4|s|γ3+1 = −2c3V1 − 2

γ3+1
2 c4V

γ3+1
2

1
(37)

Similar to the case 1, the system state will converge to
the following region in a fixed time:

|s| ≤
(

σ

k2

) 1
γ3

(38)

The last step is to illustrate that e2 = 0 for the afore-
said two cases is not an attractor in the reaching stage.
Using (21) into (5) for e2 = 0, we obtain

ė2 = −k1s − k2sig
γ3(s) − F̂ + F

= −k1s − k2sig
γ3(s) + λ1 (39)

i.e.,

ė2 =

⎧
⎪⎪⎨

⎪⎪⎩

−
(

k1 − λ1

s

)

s − k2sig
γ3 (s) �= 0, for|s| > Φ1

− k1s −
[

k2 − λ1

sigγ3 (s)

]

sigγ3 (s) �= 0, for|s| > Φ2

(40)

It means that the fixed-time reachability of s can also
be guaranteed if e2 = 0.

We can conclude from (35) and (38) that the sliding
variable s reaches the region |s| ≤ Φ = min(Φ1, Φ2)

in a fixed time.
Next, we prove the convergence of the tracking error

and its first derivative in (24). Equation (15) can be
rewritten as:

e1 +
[

β1 − s

sigγ1(e2)

]

sigγ1(e2) + β2sig
γ2(e1) = 0

(41)
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Then if β1 − s
sigγ1 (e2)

> 0, Eq. (41) is kept in the same
form of FNTSMC as that of (15), which also demon-
strate that the velocity error will converge to the fol-
lowing region in a fixed time:

|e2| ≤
(

Φ

β1

) 1
γ1

(42)

Homoplastically, Eq. (15) can also be rewritten as:

e1 + β1sig
γ1(e2) +

[

β2 − s

sigγ2(e1)

]

sigγ2(e1) = 0

(43)

Using a same analysis as that in (41), if
β2− s

sigγ2 (e1)
> 0, it follows from (22) that the tracking

error will converge to the following region in a fixed
time:

|e1| ≤
(

Φ

β2

) 1
γ2

(44)

	

Remark 2 Note that there is no singularity for the pro-
posed control law (21) with the conditions 1 < γ1 < 2
and γ2 > γ1 as that the nonsingular terminal sliding
mode control law in [23].

Remark 3 Once all fractional powers in (21) are set
to 1 (i.e., γ1 = γ2 = γ3 = 1 ), the control method
is reduced to the linear sliding mode control (LSMC)
which has the following form:

u = u1 + u2,

u1 = 1

b

(
− ae2 + a ṗr + p̈r + F̂ + 1

β1γ1
e2 + β2γ2

β1γ1
e2

)
,

u2 = 1

b

(
k1s + k2s

)
,

s = e1 + β2e1 + β1e2. (45)

In simulation, itwill be shown that the proposedmethod
has a faster dynamic performance and better robustness
than the linear sliding mode control method.

The control block diagram of PMLM is shown in
Fig. 1, and next we will verify the effectiveness of the
proposed algorithm via the simulation results.

Fig. 1 The block diagram of FNTSMC based on FDTO for
PMLM

4 Simulation results

In this section, simulation results are carried out to illus-
trate the effectiveness of the proposed control method.
The simulation is accomplished inMATLAB/Simulink
environment.

Let dload denotes external load, Ffric and Fripple
denote friction force and ripple force, respectively.
Then the lumped disturbance can be written as follows:

d(t) = Ffric + Fripple + dload. (46)

The friction force is modeled as:

Ffric = [gc + (gs − gc)e
−(

ṗ1
g )2 + gv ṗ1]sign( ṗ1),

(47)

where gc is theCoulomb friction coefficient, gv denotes
the static friction coefficient, gs denotes the static fric-
tion coefficient and g denotes the lubricant parameter.

The ripple force is given as:

Ffipple = a1 sin(ωp1) + a2 sin(3ωp1) + a3 sin(5ωp1),
(48)

where a1, a2 and a3 denote the amplitude,ω is the state-
dependent ripple force frequency. The specific param-
eters of the PMLM system are given as m = 5.4 kg,
R = 16.8 ohms, L f = 130 N/A, Le = 123 V/m/s,
gc = gv = 10 N, gs = 20 N, g = 0.1, a1 = 8.5,
a2 = 4.25, a3 = 2.0, w = 314 rad/m.

A step signal (i.e., pr(t) = 0.2) and a sinusoidal sig-
nal (i.e., pr(t) = 0.1 sin(π

2 t)) are, respectively, viewed
as the reference position. Particularly, a third-order
FTDOare employed to replace n-order observer in con-
sideration of simple structure and estimation accuracy.
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The PID control algorithm and the LSMC algorithm
are applied to complete the position tracking control as
compare to the FNTSMC algorithm. The controllers’
parameters are detailedly summarized in Tables 1 and
2.

(1) Step response
The step signal is chosen as a 0.2m displacement.

In this case, dload = 0N. Under the PID, LSMC and
the proposed FNTSMC, the response curves for the
displacement of PMLM are shown in Fig. 2. The con-
vergent time of PID control and LSMC approach are
approximately 2 s and 1 s, respectively.Meanwhile, the
convergent time of the proposed FNTSMC approach
is about 0.2 s. The steady-state error range (SSER) of
PID control and LSMC approach are−0.7 to 0mm and
−0.1 to 0.3mm, respectively. Relatively, the SSER of
the proposed FNTSMC approach is −0.1 to 0.1mm.
It can be concluded that the proposed FNTSMC can

Table 1 Controllers’ parameters for tracking step signal

Control schemes Control gains

PID kp = 400, ki = 20, kd = 6

LSMC k1 = 400, k2 = 100, k3 = 50,

r1 = 0.9, r2 = 0.8, r3 = 0.7,

β1 = 0.1, β2 = 0.08,

γ1 = 1, γ2 = 1, γ3 = 1

FTSMC k1 = 0.005, k2 = 400, k3 = 100,

r1 = 0.9, r2 = 0.8, r3 = 0.7,

β1 = 0.01, β2 = 0.1,

γ1 = 1.4, γ2 = 1.5, γ3 = 0.5

Table 2 Controllers’ parameters for tracking sinusoidal signal

Control Schemes Control gains

PID kp = 5000, ki = 5000, kd = 2000

LSMC k1 = 1500, k2 = 1000, k3 = 500,

r1 = 0.9, r2 = 0.8, r3 = 0.7,

β1 = 0.01, β2 = 0.2,

γ1 = 1, γ2 = 1, γ3 = 1

FTSMC k1 = 400, k2 = 200, k3 = 200,

r1 = 0.9, r2 = 0.8, r3 = 0.7,

β1 = 0.01, β2 = 0.1,

γ1 = 1.4, γ2 = 1.5, γ3 = 0.5
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Fig. 2 The response curves for displacement under step response

offer a faster convergent rate and a smaller steady-state
error.

(2) Tracking a sinusoid signal
A sinusoidal signal for displacement with amplitude

of 0.1m and the frequency of π
2 rad/s is investigated. In

this case, dload = 0N. Similarly, the response curves are
given in Figs. 3 and 4. As seen from Fig. 4, the SSER
of the PID control and LSMC approach are, respec-
tively, −5 to 5mm and −2 to 2mm while the SSER of
the FNTSMC is −0.5 to 0.5mm. It is shown that the
proposed FNTSMC can greatly reduce the steady-state
error.

(3) Robustness against the load disturbance
A disturbance load with 12N, i.e., dload = 12N is

suddenly added to the control system. The correspond-
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Fig. 3 The response curves of displacement for tracking a sinu-
soidal signal
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Fig. 4 The response curves of displacement error for tracking a
sinusoid signal
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Fig. 5 The response curves for displacement error for tracking
a sinusoid signal with a sudden disturbance load

ing response curves for displacement error under sinu-
soidal signal are shown in Fig. 5. From Fig. 5, we can
see that the proposed method still possesses the small-
est SSER after a sudden disturbance load at 5 s. It also
indicates that the proposed approach exhibits the best
robustness against the disturbance in the comparison
of the three approaches.

As obviously shown in above simulation results, the
proposed FNTSMC method can obtain fastest conver-
gence rate and smallest tracking errors, i.e., can pos-
sesses preferable control property than that of the PID
control method and LSMC method.

5 Conclusion

In this paper, a fast nonsingular terminal sliding mode
control (FNTSMC) approach has been proposed to
explore the position tracking problem of PMLM. It
has been shown that the proposed control method has
improved the tracking accuracy as well as restrained
the chattering phenomenon. In addition, a FTDO has
been applied to provide the estimation of lumpeddistur-
bance and improve robustness against the uncertainty
of lumped disturbance. Simulation results have been
carried out to illustrate the effectiveness of the proposed
control method and correctness of theoretical analysis.
Further investigation includes position tracking control
of PMLM via output feedback control and the related
experimental tests.
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